Deletion of a negatively acting sequence in a chimeric GATA-1 enhancer-long terminal repeat greatly increases retrovirally mediated erythroid expression.

نویسندگان

  • Anna Testa
  • Francesco Lotti
  • Linda Cairns
  • Alexis Grande
  • Sergio Ottolenghi
  • Giuliana Ferrari
  • Antonella Ronchi
چکیده

The locus control region of the beta-globin gene cluster has been used previously to direct erythroid expression of globin genes from retroviral vectors for the purpose of gene therapy. Short erythroid regulatory elements represent a potentially valuable alternative to the locus control region. Among them, the GATA-1 enhancer HS2 was used to replace the retroviral enhancer within the 3'-long terminal repeat (LTR) of the retroviral vector SFCM, converting it into an erythroid-specific regulatory element. In this work, we have functionally studied an additional GATA-1 enhancer, HS1. HS1 participates in the transcriptional autoregulation of GATA-1 through an essential GATA-binding site that is footprinted in vivo. In this work we identified within HS1 a new in vivo footprinted region, and we showed that this sequence indeed binds a nuclear protein in vitro. Addition of HS1 to HS2 within the LTR of SFCM significantly improves the expression of a reporter gene. The deletion of the newly identified footprinted sequence in the retroviral construct further increases expression up to a level almost equal to that of the wild type retroviral LTR, without loss of erythroid specificity, suggesting that this sequence may act as a negative regulatory element. An improved vector backbone, MDeltaN, allows even better expression from the new GATA cassette. These results suggest that substantial improvement of overall expression can be achieved by the combination of multiple changes in both regulatory elements and vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intron 1 GATA site enhances ALAS2 expression indispensably during erythroid differentiation

The first intronic mutations in the intron 1 GATA site (int-1-GATA) of 5-aminolevulinate synthase 2 (ALAS2) have been identified in X-linked sideroblastic anemia (XLSA) pedigrees, strongly suggesting it could be causal mutations of XLSA. However, the function of this int-1-GATA site during in vivo development remains largely unknown. Here, we generated mice lacking a 13 bp fragment, including t...

متن کامل

Cloning and characterization of erythroid-specific DNase I-hypersensitive site in human rhesus-associated glycoprotein gene.

Rhesus-associated glycoprotein is a critical co-factor in the expression of rhesus blood group antigens. We identified and cloned an erythroid-specific major DNase I-hypersensitive site located about 10 kilobases upstream from the translation start site of the RHAG gene. A short core enhancer sequence of 195 base pairs that corresponded with the major hypersensitive site and possessed position-...

متن کامل

In vivo analysis of retroviral enhancer mutations in hematopoietic cells: SP1/EGR1 and ETS/GATA motifs contribute to long terminal repeat specificity.

The objective of this work was to identify, in the context of chromosomally integrated DNA, the contribution of defined transcription factor binding motifs to the function of a complex retrovirus enhancer in hematopoietic cells in vivo. Repopulating murine hematopoietic cells were transduced with equal gene dosages of replication-incompetent retrovirus vectors encoding enhanced green fluorescen...

متن کامل

Constitutive expression of GATA-1 interferes with the cell-cycle regulation.

GATA-1, mainly expressed during erythroid differentiation, has been shown to regulate the genes specifically expressed in the late stages of erythropoiesis and to protect erythroid cells from apoptosis, suggesting that it might interfere with the cell cycle. By expressing the retrovirally transduced human GATA-1 cDNA in NIH3T3 fibroblasts, we have shown that GATA-1 alone was unable to transacti...

متن کامل

A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction.

GATA-1, a transcription factor essential for the development of the erythroid lineage, contains two adjacent highly conserved zinc finger motifs. The carboxy-terminal finger is necessary and sufficient for specific binding to the consensus GATA recognition sequence: mutant proteins containing only the amino-terminal finger do not bind. Here we identify a DNA sequence (GATApal) for which the GAT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 11  شماره 

صفحات  -

تاریخ انتشار 2004